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We study the spatial pattern formation in a model ecosystem by the position-fixed reaction method.
This ecosystem contains three biospecies whose competing powers are cyclic. It is well known that this
system is self-organized into a quasistationary state, and that the mean-field approximation (MFA) never
predicts such a pattern formation. Recently, several authors applied the pair approximation (PA), and
obtained considerable improvements. However, applying PA to our ecosystem fails to yield such an im-
provement as revealed by computer simulations. The failures of MFA and PA may be attributed to the
fact that both approximations neglect a long-range correlation. Thus we introduce the concept of topo-
logical defects, such as “vortices” or “strings,” and demonstrate that the dynamics of these defects can at
least qualitatively account for the observed pattern formation dynamics.

PACS number(s): 02.50. —r, 87.10.+¢, 64.60.Cn, 82.20.Wt

I. INTRODUCTION

Spatial patterns in various complex systems are inten-
sively investigated by many authors [1]. In general, it is
very difficult to give a theoretical account on the dynam-
ics of the spatial pattern formed. This difficulty mainly
comes from the fact that the degree of freedom of space is
infinite. In this article, we introduce the concept of topo-
logical defects [2] to understand the pattern dynamics.
Since the number of topological defects is not so great,
the pattern formation process of the system is much
simplified. The importance of such a mesoscopic
(coarse-grained) picture is widely recognized in many
areas [3].

In most cases, large interactive systems organize them-
selves into stationary states. Note that “stationary” is
not synonymous with “equilibrium.” When the principle
of detailed balance is broken, the stationary state is in
fact in nonequilibrium. Such a state is said to be in “cy-
clic balance” [4]. A typical example of nonequilibrium
systems is an ecosystem where the cyclic balance is main-
tained by a food chain (web). In the present paper, we ex-
amine a basic cyclic system whose reaction rule is the
same as that of the so-called “paper, scissors, stone”
(PSS) game [5-7]. The PSS system is one of the simplest
ecological models and is defined in Sec. II.

Until recently, the pattern formation for model ecosys-
tems has been investigated by the use of diffusion-
reaction equations [8], which are represented by the sum
of the reaction and diffusion terms. In most cases, the
former term is called the Lotka-Volterra model [9].
However, reaction-diffusion approaches have several lim-
itations [10,11]. (i) In the reaction term, the effect of spa-
tial correlation is neglected. (ii) It is very hard to obtain a
“quasistationary state,” where the average density of
each species is unchanged with time but the local density
of the species varies dynamically.

Recently, lattice models such as the cellular automaton
[12] and the coupled map lattice [13], have received
growing interest in connection with the development of
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computers. Although the lattice model is an
oversimplification for real systems, one can get valuable
information on nonlinear complex problems. In particu-
lar, the lattice model is useful to obtain the quasistation-
ary pattern and to take into account the effect of spatial
correlation. It is, however, still difficult to undertake a
theoretical investigation.

In the present article, we deal with a chemical reaction
on lattice spaces. In the case of the chemical reaction,
the mean-field theory, which is often called the Lotka-
Volterra model, is well established. From the key words
“chemical reaction” and “lattice model,” one may imag-
ine the diffusion-controlled reaction [14] where each reac-
tant can move randomly. This reaction system, however,
has the following disadvantages [15]. (i) It requires long
computation time to carry out simulations. (ii) It is very
difficult to give theoretical approaches. These disadvan-
tages have origins in the diffusion process of reactants.

For this reason, we apply the position-fixed reaction
(PFR) [10, 16-18], which is equivalent to the contact
process [19-21]. Simulations for the PFR are carried out
under the assumption that each reactant (individual) on a
lattice site never moves. This assumption may be appli-
cable for plants and approximately valid even for an-
imals, provided that the radius of action of an individual
is much shorter than the size of the whole system.

One of the most interesting results of position-fixed re-
actions may be the ‘“uncertainty (unpredictability)
theory” for biospecies extinction [10]: one cannot predict
the extinction of biological species nor pursue the cause
of extinction. This unpredictability is essentially different
from that in chaotic motion and practically destroys the
concept of natural selection in Darwinian arguments [22].
Although to some extent the unpredictability is due to
the complexity of the systems, it is largely due to the
“phase transition” and “indirect effect.” In general, the
phase transition has the property that a major result is
brought about by minor causes. On the other hand, the
indirect effect means that there is no direct relation be-
tween the cause and result [23]. It is, therefore, hopeless
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to determine the minor cause of the phase transition (ex-
tinction), since the cause is not directly related to the ex-
tinction.

So far, many physicists have intensively investigated
the phase transition. On the other hand, very few know
the indirect effect. The study on the spatial pattern for-
mation reveals that this effect brings about many para-
doxical results [10,11,16,17] and that outcomes due to the
indirect effect are very sensitive to various factors, such
as values of interaction parameters [10]. In order to un-
derstand the importance of the indirect effect, it is neces-
sary to develop theoretical approaches.

However, at the present stage, the mathematical treat-
ment for the position-fixed reaction (PFR) is too restrict-
ed. Even in two-state models (each lattice site takes on
the value of either +1 or —1), exact results have not yet
been obtained [24]. Heretofore, several approximation
theories have been presented. Above all, the mean-field
theory is very important, since it is the first order approx-
imation for PFR. Nevertheless, this theory never gives a
sufficient prediction about the result of PFR. Recently,
Katori and Konno [21] applied the second order theory
known as pair approximation (PA). After that work,
several authors [10,11,17,25] applied the pair approxima-
tion (PA) to various position-fixed reactions and obtained
more preferable results than those predicted by the
mean-field approximation (MFA).

In the present article, we apply the PA to the PSS sys-
tem to explain the pattern formation dynamics observed
in the lattice model of the PFR. However, computer
simulations reveal that the PA model never gives a com-
fortable result, even compared to the mean-field approxi-
mation. Both these approximations fail because they
neglect the long-range correlation, whose existence is
confirmed by a numerical analysis.

To explain the pattern formation in the PSS model, we
introduce the concept of topological defects such as “vor-
tices” and “strings.” It is demonstrated that the dynam-
ics of these defects can at least qualitatively account for
the observed pattern formation dynamics. The pattern
process of the lattice system is thus simplified by such a
mesoscopic (coarse-grained) picture.

This article is a full length version of Ref. [2]. Howev-
er, in this article we emphasize the following points for
the first time. (i) We examine the population dynamics of
the pair approximation, and demonstrate that the PA
never explains the dynamics of the PFR (Sec. III). (ii) We
show examples of the effect of long-range correlation
(Sec. IV). Hence, it is found that the concept of topologi-
cal defects is still useful to account for the pattern forma-
tion in the PSS model (Sec. V).

II. MODEL AND MASTER EQUATIONS

We consider a basic cyclic system in which many indi-
viduals (particles) of three species 1, 2, and 3 are con-
tained. The interaction between particles is assumed to
be represented by the rules of the paper, scissors, stone
game,

X, +X,—2X, , (1a)
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X, +X,—2X, , (1b)
X;+X,—2X; , (1c)

where X; denotes the individual (particle) of species i. In
this case, three species have the cyclic strength; the
species I is “‘stronger” than species i +1, where i +3=i.
It is emphasized that the system (1) has the “cyclic sym-
metry,” namely, our system is unchanged, even if every
species i (i =1,2,3) is changed to i +1. Because of cyclic
symmetry, there is no dominant species in the hierarchy.

The random collision model (mean-field limit) of the
PSS game was first studied by Itoh [S]. He obtained the
result that the population dynamics reveals a “‘neutrally
stable center’’; the population size of each species oscil-
lates around the fixed point where three species coexist
with equal densities. The oscillation profile depends on
initial conditions.

On the other hand, the lattice model (PFR) for the rule
(1) has been studied by the present author [6] and by
Bramson and Griffeath [7]. The former work first
demonstrated that the spatial pattern on two-dimensional
lattice space naturally evolves into a quasistationary
state. Such a pattern is self-organized irrespective of ini-
tial patterns. Photographs of typical patterns are illus-
trated in Fig. 1, where (a) and (b) represent the initial ran-
dom distribution and final stationary pattern, respective-
ly.

Let P; be the density of species i (3;P; =1); then the
master equations for the system (1) in the position-fixed
limit are expressed by

Pl=2P12~2P31 ) (23.)
P2=2P23——2P12 N (2b)
P,=2P;,—2P,; . (2¢)

Here the dot represents the derivative with respect to the
time ¢, and P;; is the two-body probability density finding
a species i at a site and a species j at a nearest neighbor of
that site (i,j=1,2,3). Time ¢ is measured in units of
Monte Carlo steps (MCS) [6]. Note that P;; is the joint
probability, so that the relations P;;=P; and 3 ;P;=P;
hold.

Similarly, the master equations for the two-body prob-
ability densities are given by

(z/4)P,; =P, +(z—1)[P} =P} ], (3a)
(z/4)Py, =P, +(z—1)[P3,— P}, ], (3b)
(z/84)P3,=P;, +(z—1)[P};—P3;], (3¢)

(z/2)P;,=—P,+(z— D[ —P}, — Py +P}, +Ph],

(3d)
(z/2)Py;=—P,;+(z—1)[—P3},—P% +Pl;+P3;],

(3e)
(z/2)P3,=—P, +(z—1)[—P},— P}, +P%, +P},],

(30
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where }k denotes the three-body probability density of
finding a color i at a site and colors j and k at nearest
neighbors of that site, and z is the number of nearest
neighbors (z =4 for square lattice). It is worthwhile not-
ing that (2) are derived from (3). The master equations (2)
or (3) cannot be solved, since n-body probability densities
are represented by (n + 1)-body ones.

III. NUMERICAL ANALYSIS IN THE PA LIMIT

In this section, we examine the dynamics under the
pair approximation (PA), which is the second order ap-
proximation for the lattice model. This approximation is
explicitly expressed by [21,10]

PiL=P,P, /P, . 4)

Inserting (4) into (3), we obtain the evolution equations in
the PA limit:

P, =P, +3[(Py,?/P,—PyP,,/P], (5a)
Py =Py +3[(Py)2/P;—P, Py, /P, ], (5b)
Py =Py +3[(P3,)*/P,— Py Py /P;], (5¢)

Pjy=—P;,+3[—(P;)*/P,— P3P, /P,

+P3 Py /P3+ PPy /Py],  (5d)
Pyy=—Py;+3[—(Py;)*/P;—P,Py, /P,

+P Py /Py + Py Py /Py], (5e)
Py =—Py +3[—(P3,)*/P,— Py Py, /P,

+Py P, /Py+Py Py /P, (50

where we assume a two-dimensional square lattice (z =4).
The steady-state solution is easily obtained by setting all
the time derivatives in (5) to be zero,

Pi=3, Py=3%, Pj=%, (6)

y 27

where i,j=1,2,3 (i5)).
First, we undertake a theoretical analysis. We consider
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FIG. 1. Photographs of typi-
cal patterns are illustrated,
where (a) and (b) represent the
initial random pattern and final
stationary pattern, respectively.

a simple case where an initial condition satisfies
P =Pyp=Py3=P; , P,=Pp=Py=P;. M

In this case, the condition (7) holds at any time (cyclic

symmetry). According to the mathematical relation
(Z;P;;=1), we have
P’=':13—_2P‘ B (8)

It follows from (5) that

From the above equation, we can easily prove that the
stationary solution (6) (symmetrical fixed point) is stable
under the condition (7).

Next, we consider general cases where the initial condi-
tion never satisfies the relation (7). We solve the basic
equations (5) by computer simulation. In Fig. 2, a typical
example of time dependences of densities is displayed.
The population dynamics of PA shows that the sym-
metrical fixed point (6) becomes unstable. In order to
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FIG. 2. A typical example of population dynamics under the
pair approximation (PA). The time dependences of densities are
displayed under the initial condition that P, =%, P,=1, Py=1,
and P!j=PlP]‘
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FIG. 3. The same as Fig. 2, but where the longitudinal axis
denotes P; (i=1,2,3).

give a detail of the attractor, we depict the time depen-
dences of P; and P;; in Figs. 3 and 4, respectively. It is
found from Figs. 2—4 that the orbit in phase space is at-
tracted into a cycle that contains the following three
singular points (asymmetrical fixed points):

P“:l, P22=1, P33:1. (10)

Although each point P;=1 is the stationary solution of
(5), the orbit is never completely trapped into these states.
When ¢ is sufficiently large, the orbit stays in the vicinity
of one of the asymmetrical fixed points for a very long
period. It is therefore concluded that the symmetrical
fixed point (6) is unstable, unless the special condition (7)
is satisfied (saddle point).

os[ T 1

)

100

FIG. 4. The same as Fig. 2, but where the longitudinal axis
denotes P;; (i7).
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IV. LONG-RANGE CORRELATION

The failure of the mean-field theory and PA model im-
plies that the long-range correlation is essentially impor-
tant for the pattern formation. According to the master
equations (2) and (3), n-body probability densities are
represented by (n +1)-body ones. Hence, higher-order
probability densities (long-range correlations) play an im-
portant role for the population dynamics.

In the stationary pattern shown in Fig. 1(b), we notice
such a long-range correlation. For example, if one indi-
vidual of a species is located in the sea (cluster) of another
species, the former species is usually weaker than the
latter one. This feature is related to higher-order proba-
bility densities, so that they are never explained by the
usual correlation function.

We first define the usual correlation function C;; as fol-
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FIG. 5. Correlation functions obtained from the stationary
pattern [Fig. 1(b)] are plotted against D, where (a) and (b)
represent the usual correlation function (C;;) and CFSI, respec-
tively. The terms “weak,” “same,” and “strong” in this figure
mean that the species i is weaker than, is of equal strength, and
is stronger than the reference species j, respectively. The hor-
izontal axis denotes the distance D, which is defined by the least
number of lattice steps between two lattice points.
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lows: C;; is the probability of finding a species i under
the condition that there is a reference individual of a
species j at a distance D from species i. In Fig. 5(a), the
correlation functions (C;;) obtained from the stationary
pattern [Fig. 1(b)] are plotted against D, where the terms
“weak,” ‘“‘same,” and “strong” in this figure mean that
the species i is weaker than, of equal strength as, and
stronger than the reference species j. We find from Fig.
5(a) that each species forms a contagious pattern
(C;>Cyj, for i#j). However, the difference between
weaker and stronger species is not shown in this figure.

Next, we define a correlation function for a surrounded
individual (CFSI); CFSI is the correlation function under
the condition that the reference individual is completely
surrounded by another species. By definition, CFSI at
D =1 for the same species takes the value of zero. In Fig.
5(b), the results of CFSI are displayed. It is found from
Fig. 5(b) that the surrounded species is usually weaker
than the surrounding one. Hence, the stationary pattern
indicates the strength relation between species. Such an
effect of long-range correlation is never taken into ac-
count in the pair approximation (4).

We show another example of long-range correlation.
Although the configuration of the pattern in the quasista-
tionary state dynamically varies, we can observe the fol-
lowing unchanged features.

(i) There are various sizes of clusters occupied by the
same species (fractal-like pattern). In particular, several
large clusters are observed [Fig. 1(b)].

(ii) We have shown power-law spectra in a limited fre-
quency region [26].

The above results (i) and (ii) may be related to each other,
i.e.,, the low-frequency components in the power-law
spectra are associated with the fact that it takes a long
time for a large cluster to change its shape. This will be
qualitatively discussed in the next section.

V. DEFECT DYNAMICS

The pattern dynamics of the PFR is never explained by
the mean-field theory nor by pair approximation. In gen-
eral, it is very difficult to give a theoretical approach on
the dynamics of spatial patterns. This difficulty mainly
lies in the fact that the number of total lattice sites is very
large. Now we introduce the concept of topological de-
fects [2] to understand the pattern dynamics. The impor-
tance of topological defects is widely recognized in many
areas. Since the number of topological defects is much
less than that of total lattice sites, the pattern process of
the system is very simplified.

A. Vortex

We first consider the pattern formation in two-
dimensional lattice space. We define “domain (cluster)”
as the region occupied by individuals (particles) of the
same species. Even in the stationary state, the
configuration of domains greatly varies with time. Let us
define “average velocity” with respect to the movement
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of the domain boundary: when the species at neighboring
lattice points are i and j (i), the average velocity v;; of
the boundary takes a constant vector (v, —v, or 0):

V= V3030,

V21TV V3=V, an

We consider a unit square cell that contains four parti-
cles. In each cell, four velocity vectors can be deter-
mined. From these vectors, we define the “vorticity” o
at the center of the cell by

o=curly, (12)

which is calculated from (11) in a difference scheme of ro-
tation:

v=0,1,—1. (13)

o=3vvn ,

Here n is the unit vector normal to the lattice plane, and
v is the vortex charge. The above equation shows that
there are two types of vortices, Vx (v=1) and ¥V,
(v=—1), distinguished by the vortex charge (direction of
the rotation). From the Stokes theorem in the discrete
version, we find the conservation law, that is, that the to-
tal vortex charge always vanishes under the periodical
boundary condition. This law explains the following vor-
tex reaction:

Ve +Vi=9 . (14)

Although the vortex moves in a complicated manner as a
particle, it is never annihilated nor created except for the
reaction (14).

B. Dynamics of the vortex

We performed the simulation of the position-fixed re-
action and obtained the time dependences of the total
number (density) of vortices N (¢) for different initial con-
ditions (Fig. 6). It is found from Fig. 6 that N(¢) reaches

0.2
(a)

=

0.1

0.2

(b)

=

0.1

500 1000 1500

t

FIG. 6. The time dependences of the total number (density)
of vortices N(¢). Initial conditions are chosen as follows: (a)
random pattern; (b) three species distribute as a tricolor flag.
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a stationary value, irrespective of the initial conditions.
Moreover, we find from Fig. 6(b) that it takes a long time
to reach the stationary state for the initial condition
N(0)=0. Snapshots of the vortex pattern are displayed
in Fig. 7, where (a) and (b) represent the initial and sta-
tionary states, respectively. Although the defect pattern
in the stationary state greatly varies with time, it has in-
variant features. First, there are large voids where the
vortex is empty. Second, vortices are located with nega-
tive correlation; the type Vy is located around a vortex of
type V. .

In Fig. 8, the number of vortices that are created or an-
nihilated during one MCS are plotted, where the initial
pattern is set as the random distribution. For the sake of
comparison, N (¢) is also shown in this figure. From Fig.
8, we obtain the dependences of creation and annihilation
rates against N (Fig. 9). It is found from Fig. 9(a) that the
creation rate is proportional to the total vortex number
N. On the other hand, Fig. 9(b) reveals that the annihila-
tion rate of vortices is proportional to N2. This result im-
plies that the annihilation process takes place by a ran-
dom collision of a vortex pair. In summary, we obtain
the dynamical equation for the density of vortices N:

N=aN—BN?, (15)

where =0.59 and B=6.9 (density ~!). The above equa-
tion represents the fact that the density of the vortices
reaches a stationary value: Ng=a/B~0.09. Thus the
defect dynamics explain well the stabilization of pattern
dynamics. It is, however, noted that the stationary value
Nj is considered different from the result obtained by ac-
tual simulation. In the latter case, we have Ng~0.04.

We can visualize the defect dynamics by the use of a
video. Observation of defect dynamics shows the follow-
ing results.

(a) The vortices are not equally created at every site
(“unequal creation”). The creation rate decreases in a re-
gion where the density of the vortex is low.

(b) The migration of the vortex is not random (“‘non-
random walk”). It is very rare that a vortex moves into a
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FIG. 7.
dimensional square lattice space (38X38). (a) The vortex pat-
tern at -t =0, where species distribute randomly. (b) A station-
ary pattern (1 =200).

Typical pattern formation of vortices in two-
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FIG. 8. The time dependence of the number (density) of vor-
tices that are created or annihilated during one MCS. The total
number of vortices N is also plotted in this figure. The initial
pattern is set as the random distribution [Fig. 7(a)].

large void. The vortex has a tendency to go to the region
where vortices are rich.

The results (a) and (b) can be easily understood by the fol-
lowing consideration. Inside a large void, a homogeneous
pattern occupied by one species is usually formed, so that
a vortex pair is hardly created in the void, or a vortex
rarely goes into the void.

Finally, we emphasize the following points.

(i) If a fluctuation term is added to the right hand side
of (15), then we may obtain similar defect dynamics as
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FIG. 9. The dependences of creation and annihilation rates
against N. These figures are obtained from the results of Fig. 8;
(a) creation rate, (b) annihilation rate. The line in (a) represents
aN, while the curve in (b) denotes BN?, where a=0.59 and
B=6.9 (density " }).
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shown in Figs. 6(a) and 6(b).

(ii) The unequal creation and nonrandom walk of the
vortex qualitatively account for the fact that the local
density of the vortex largely differs from the overall (aver-
age) density.

For reason (ii), a variety of sizes of clusters (fractal-like
pattern) or large vortex voids are produced [see Fig. 1(b)
or Fig. 7(b)]. Such large voids are related to the power-
law spectra as described in the preceding section.

C. String

We describe the topological defects in the case where
the spatial dimension d is high. If d=3, the defect is
characterized by the vortex line (string), which is a se-
quence of vortices. Every string closes, under the period-
ical boundary condition. Since the species rotate around
the string (loop), each string has its own direction of rota-
tion.

We performed the simulation of the position-fixed re-
action (PFR) and obtained the time dependences of the
string pattern. An example of pattern formation is illus-
trated in Fig. 10, where (a) and (b) represent the string
patterns at the initial and stationary states, respectively.
The string dynamics for the PFR system reveals that the
total length of the strings (L) approaches a unique value
(stationary state); L ~0.12. In this process, each string
grows or shrinks and sometimes gives rise to reconnec-
tion. Thus, our strings resemble the vortex lines in
superfluid [27] or the comic strings [28]. However, the
string in our model has several properties that are
different from other strings: (i) strings can be created in-
side the system; (ii) our string is discrete. By the latter
feature, we can easily find the elementary process of the
string dynamics,

Up=¢, (16)

where Uy is the smallest unit ring. For the cubic lattice,
Uy denotes the square loop with a side of the lattice size.
There are two types of loops, which are distinguished by
the directions of rotation. Whenever the strings change
their shape, the unit ring Uy of the defect is annihilated
or created for one collision step.

The process leading to the stationary state is very com-

FIG. 10. Typical pattern formation of
strings in three-dimensional cubic lattice space
(16X16X16). (a) The string pattern at t=0,
where species distribute randomly. (b) A sta-
tionary pattern (¢ =100).

plicated, depending on initial conditions. Another exam-
ple of pattern formation is illustrated in Fig. 11, where (a)
represents the distribution of species at £ =0 (the string is
therefore absent). The configurations of strings are visi-
ble in Figs. 11(b), 11(c), and 11(d). In the early-time stage
(t=1) several unit rings are created. The axes of the
rings point in the same direction, since the creation of the
rings is attributed to the fact that species 3 in Fig. 11(a)
connects with 1 penetrating 2. The snapshots in the
steady state [Figs. 10(b) and 11(d)] illustrate several
features: (i) large voids are found as for d =2; (ii) the
shape of the large strings is entangled in a complicated
way. These features are also explained by the unequal
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FIG. 11.. The same as Fig. 10, but an initial pattern of three
species is distributed as shown in (a). String configurations are
displayed in (b) and (c), where (b) t = %, (c) t=1, and (d) t=100
(stationary state).
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creation of vortex rings. In the region where string densi-
ty is high, many unit rings are frequently created or an-
nihilated. Under such a situation, the string forms a
complicated configuration.

VI. CONCLUSIONS AND DISCUSSION

We have studied the dynamics of the PSS model. It is
well known that the position-fixed reaction (PFR) of this
model is self-organized into a stationary state irrespective

of initial patterns. The mean-field theory (MFT) never
predicts such a dynamics. In the present article, we ex-
amined the population dynamics in the pair approxima-
tion limit, which corresponds to the second order approx-
imation for the lattice model (PFR). Numerical analysis
reveals that in the PA limit the symmetrical fixed point
(Py=P,=P;=1) becomes unstable (saddle point). It is
therefore found that the PA never sufficiently explains
the result of the lattice model, compared to the MFT.
We schematically illustrate the results of the dynamics in
three different methods:

PFR — — —stable focus
Symmetrical fixed point— — — {MFT— — —neutrally stable center
PA — — —unstable saddle point .

In the case of the PA model, the orbit in phase space is
attracted to the cycle that contains the asymmetrical
fixed points (10). The failure of the mean-field theory and
PA model may come from the fact that these theories
neglect the effect of long-range correlation [11].

In Sec. IV, we have described the effect of long-range
correlation. The stationary pattern in PFR [Fig. 1(b)] is
formed under such an effect. For example:

(1) If one individual of a species is located in the cluster
(domain) of another species, the former species is usually
weaker than the latter one.

(ii) There are various sizes of clusters occupied by the
same species (fractal-like pattern).

Feature (ii) is qualitatively explained by the concept of a
vortex, the formation of the fractal-like pattern may orig-
inate in the properties of unequal creation and the non-
random walk of the vortex as described in Sec. V. As for
feature (i), its mechanism is still unknown, and a more
refined theory or idea will be necessary.

We have demonstrated the dynamics of topological de-
fects. Since the number of topological defects is much
less than that of total lattice sites, the pattern formation
in the lattice system is simplified by defect reactions. The
creation (or annihilation) rate of vortices is proportional
to N (or N?). It is therefore found that the creation pro-
cess is similar to the photon creation in stimulated emis-
sion, while the annihilation process closely resembles usu-
al random collision between vortex pairs. Such a
difference between creation and annihilation processes ac-

counts well for the stabilization of population dynamics
[see (15)]. It is therefore important to take into account
the effect of long-range correlation (mesoscopic effect).

We discuss the topological defects when the spatial di-
mension d is high. In the string system (d=3), we
presented (16) as the elementary process of the dynamics.
Thus the defect dynamics explains well the stabilization
of pattern dynamics in d =3. It is natural to conclude
from (16) that for the order parameter, using the number
of unit rings Uy to construct a whole string is more ap-
propriate than using the total length of strings (L). Un-
fortunately, however, it is difficult to obtain this value
from the actual lattice system.

If 4<d, the topological defect is known as a “mem-
brane.” From the analogy with (16), we easily predict
that the elementary process of defect dynamics is
represented as follows:

Us=¢ , a7

where Uy is the (d —2)-dimensional unit surface. In the
case of a four-dimensional lattice, Ug denotes the surface
of the unit cubic with a side of the lattice size. There are
two types of unit surfaces which are distinguished from
the directions of rotation. Whenever the membrane
changes its shape, the unit surface Ug of the defect may
be annihilated or created for each collision step.
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FIG. 1. Photographs of typi-
cal patterns are illustrated,
where (a) and (b) represent the
initial random pattern and final
stationary pattern, respectively.



